

What Is Serverless

● Traditional On-Premise

– You predict workloads, budget and purchase hardware to meet maximum demand, then
build, test, deploy, and maintain.

● Then comes hosted servers

– New servers can be set up on shorter notice, but you still have to deploy your services, test,
monitor, and maintain them.

● Hosted servers go virtual

– Deploying new servers now take minutes and can be instantiated from pre-built images.
Servers can be scaled up and down responding to load, but must still be monitored and
maintained.

● And then comes serverless

– No management for either hardware or the operating system, and often not other things as
well.

AWS Serverless Services
By Category

Compute Docker, Lambda, Fargate

Storage S3, EFS

Data Stores DynamoDB, Aurora

Front-Ends API Gateway, Elastic Load Balancer, Route53

Application Integration SNS, SQS, AppSync

Orchestration Step Functions

Analytics Kinesis, Athena

CI/CD CodeStar, CodePipeline, CodeBuild, CodeDeploy

Authoring Cloud 9

Monitoring/Logging CloudWatch, X-Ray

The Old Way: Docker

● Elastic Container Registry (ECR)

● Elastic Container Service (ECS)

● Elastic Kubernetes Service (EKS)

● Fargate

● A stripped-down virtual machine

● Build environment becomes the deployment environment

● Updated as a whole

● Based on layers

The New Way: Lambda

● Docker-type container stripped to its bare minimum

● A single disposable instance per function call

– Infinitely scalable

– Insulates runtime environment from bugs, bad data, attacks

Lambda Pricing

● Memory (MB) Free tier seconds per month Price per 100ms ($)

● 128 3,200,000 0.000000208

● 192 2,133,333 0.000000313

● 256 1,600,000 0.000000417

● 320 1,280,000 0.000000521

● 384 1,066,667 0.000000625

● 448 914,286 0.000000729

● 512 800,000 0.000000834

● 576 711,111 0.000000938

● 640 640,000 0.000001042

● 704 581,818 0.000001146

...

● 3008 136,170 0.000004897

Things What Been Done For You

● Data Stores: Aurora, DynamoDB, MySQL, PostGRESQL

● Storage: EFS, S3, FSx

● DNS: Route53

● Load Balancing: Application Load Balancer

● Front End: API Gateway

● Monitoring and Security: CloudWatch, CloudTrail, GuardRails,
Inspector

Orchestration

● Simple Notification Service (SNS)

– A managed pub/sub messaging service. Can push to SQS, Lambda,
or end users (email, SMS, mobile push)

● Simple Queue Service (SQS)

– A managed scalable messaging pipeline for communication between
services

● AppSync

– A managed service that uses GraphQL to enable applications to get
the data they need

Building, Test, and Deploy

● Cloud 9

– Managed IDE

● X-Ray

– Trace and debug serverless applications

● CodeBuild

– Managed and scalable build, test, package system

● CodeDeploy

– Fully automates code updates to EC2, Lambda, and on-premise systems

● CodePipeline

– Continuous integration and delivery service

Making It All Easier

● Step Functions

– Coordinate the components of distributed applications and
microservices using visual workflows

– Building applications from individual components that each perform a
discrete function lets you scale and change applications quickly

● CodeStar

– Enables you to quickly develop, build, and deploy applications on
AWS

– Set up your entire continuous delivery toolchain in minutes

Step Functions - Example

● {

● "Comment": "An example of the Amazon States Language for notification on an AWS Batch job completion",

● "StartAt": "Submit Batch Job",

● "TimeoutSeconds": 3600,

● "States": {

● "Submit Batch Job": {

● "Type": "Task",

● "Resource": "arn:<PARTITION>:states:::batch:submitJob.sync",

● "Parameters": {

● "JobName": "BatchJobNotification",

● "JobQueue": "<BATCH_QUEUE_ARN>",

● "JobDefinition": "<BATCH_JOB_DEFINITION_ARN>"

● },

● "Next": "Notify Success",

● "Catch": [

● {

● "ErrorEquals": ["States.ALL"],

● "Next": "Notify Failure"

● }

●]

● },

● "Notify Success": {

● "Type": "Task",

● "Resource": "arn:<PARTITION>:states:::sns:publish",

● "Parameters": {

● "Message": "Batch job submitted through Step Functions succeeded",

● "TopicArn": "<SNS_TOPIC_ARN>"

● },

● "End": true

● },

● "Notify Failure": {

● "Type": "Task",

● "Resource": "arn:<PARTITION>:states:::sns:publish",

● "Parameters": {

● "Message": "Batch job submitted through Step Functions failed",

● "TopicArn": "<SNS_TOPIC_ARN>"

● },

● "End": true

● }

● }

● }

●

